On the bistable zone of milling processes
نویسندگان
چکیده
A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains.
منابع مشابه
Design, Manufacturing and Surface quality Analysis of Machining by Self-Rotary Milling Tool
One of the disadvantages of conventional milling tools is to produce a large amount of heat in cutting zone and so making the tool warmer. As a result, the tool would be worn and its life time would be reduced. Therefore, in long time machining, it is essential to change inserts and tools, continiously. A milling tool with self rotary cutting inserts was designed and manufactured that enables i...
متن کاملDesign, Manufacturing and Surface quality Analysis of Machining by Self-Rotary Milling Tool
One of the disadvantages of conventional milling tools is to produce a large amount of heat in cutting zone and so making the tool warmer. As a result, the tool would be worn and its life time would be reduced. Therefore, in long time machining, it is essential to change inserts and tools, continiously. A milling tool with self rotary cutting inserts was designed and manufactured that enables i...
متن کاملExperimental Study of the Cutting Parameters Effect on Hole Making Processes in Hardened Steel
Hardened steels are commonly used in wide areas of technologies and industries. In respect of poor machinability of these steels and requirement of expensive cutting tools, study of machining economy is a matter of importance. Thus the present study deals with the economic considerations of various hole making processes. For this purpose, the hard steel samples were machined by conventional dri...
متن کاملExperimental Study of the Cutting Parameters Effect on Hole Making Processes in Hardened Steel
Hardened steels are commonly used in wide areas of technologies and industries. In respect of poor machinability of these steels and requirement of expensive cutting tools, study of machining economy is a matter of importance. Thus the present study deals with the economic considerations of various hole making processes. For this purpose, the hard steel samples were machined by conventional dri...
متن کاملThe Milling of Metalsthrough Adaptive Neuro-FuzzyInference System (ANFIS) for non-touch Measuring of the Temperature to Reduce Coolant
In this paper, an innovated method is used for cooling Milling zone of Stainless Steel via Adaptive Neuro-Fuzzy Inference System (ANFIS) using non-touch laser thermometer for non-touch measuring of the temperature. This method is economically appropriate because of its optimization in using coolant. In comparison to the ways which were designed to optimize the ratio of coolant, this method is t...
متن کامل